

Tetrahedron Letters 41 (2000) 1159-1163

TETRAHEDRON LETTERS

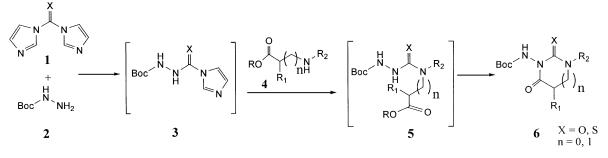
An efficient one-pot synthesis of 3-aminohydantoin and 3-aminodihydrouracil derivatives

Shengde Wu,* John M. Janusz and James B. Sheffer

Procter & Gamble Pharmaceuticals, Health Care Research Center, 8700 Mason-Montgomery Road, Mason, OH 45040, USA

Received 20 October 1999; accepted 6 December 1999

Abstract


An efficient one-pot synthesis of 3-aminohydantoin and 3-aminodihydrouracil derivatives is described. This methodology provides a simple, straightforward and versatile synthetic route to these interesting classes of heterocycles. © 2000 Elsevier Science Ltd. All rights reserved.

3-Aminohydantoin and 3-aminodihydrouracil derivatives are interesting classes of heterocycles which have demonstrated utility in pharmaceutical and agrochemical research. Compounds containing the 3-aminohydantoin and 3-aminodihydrouracil nucleus have been explored for use as anticonvulsant agents,¹ antibacterial agents,^{2,3} metalloprotease inhibitors,⁴ diuretic agents⁵ and pesticides.⁶ Although several reports have been published for the preparation of 3-aminohydantoin derivatives,^{1–3,5–16} most of them generally suffer from either multiple synthetic steps, harsh reaction conditions or lack of versatility. Recently, Yoon et al.¹⁷ developed a five-step, four-pot synthesis of 3-aminohydantoins which served as bases for a soluble polymer-supported synthesis. We describe herein an efficient one-pot synthesis of 3-aminohydantoins and thiohydantoins, which is likewise the basis for a polymer-suported synthesis. In addition, we have expanded our methodology to the preparation of the 3-aminodihydrouracils and thiodihydrouracils, the higher homologs of the 3-aminohydantoins. The general procedure is shown in Scheme 1. Successive treatment of carbonyldiimidazole or thiocarbonyldiimidazole (1) with *tert*-butyl carbazate (2) followed by addition of a variety of α -amino or β -amino acid esters 4 gives the desired final products 6 in modest to very good yield.¹⁸

We began this study by testing the conversion of *tert*-butyl carbazate (2) to intermediate 3. We initially anticipated that indiscriminate displacement of the imidazolyl moiety of carbonyldiimidazole by *tert*-butyl carbazate (2) would give a mixture of mono- and di-substituted products. The results showed, however, that when *tert*-butyl carbazate (2) was added slowly to the slight excess of carbonyldiimidazole or thiocarbonyldiimidazole in dioxane at room temperature, the intermediate 3 was formed as the sole product (97%, product was characterized by NMR). Without work-up or purification, the intermediate 3 was sufficiently pure for the next step.

^{*} Corresponding author.

^{0040-4039/00/\$ -} see front matter © 2000 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(99)02286-8

We next focused our studies on finding optimal conditions for both the displacement of the imidazolyl moiety of **3** by *N*-substituted amino acid esters and the succeeding cyclization reaction. When the intermediate **3** was treated with *N*-benzylglycine ester (**4**) in dioxane for 8 h at room temperature, only a small amount of cyclization product **6a** was observed. The major product was the uncyclized intermediate **5**. However, when heated to 50–60°C, the cyclization was complete within 4 h in very good yield. Notably, the impurities in this reaction could be removed by a simple liquid/liquid extraction providing the desired product **6a** in high purity (>95%).

Examination of solvent effects revealed that commonly used solvents, such as THF, DMF or dioxane were of approximately equal effectiveness, providing **6a** in very good chemical yields (94, 92 and 95%). Methylene chloride and acetonitrile gave slightly lower yields (85 and 88%). The different ester groups, such as the methyl, ethyl and benzyl groups, are essentially equivalent for the cyclization.

Results for the synthesis of a variety of 3-aminohydantoin/thiohydantoin derivatives, **6a–60**, using these optimized conditions are summarized in Table 1. Intermediate **3** reacts with *N*-benzylglycine or alanine esters to give products **6a–6d** in high yield (entries 1–4). Similarly, chiral and racemic cyclic amino acid esters as well as heterocyclic amino acid esters were smoothly converted into the corresponding bicyclic or tricyclic products **6e–6l** (entries 5–12). The X-ray crystal structure of **6i** (Fig. 1) verified the predicted structure and stereochemistry as well as intermolecular hydrogen bonding in the solid state. (*R*)-4-Hydroxy-L-proline ester gave **6m** in relatively lower yield (43%, entry 13), perhaps due to the increased water solubility of the product leading to losses during work-up. Under the same conditions, a longer reaction time (10 h) was required for the high yield conversion of *N*-phenylglycine ethyl ester to the desired products **6n–60** (entries 14–15).

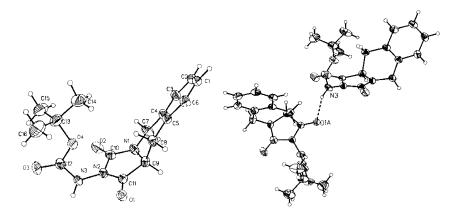


Fig. 1. X-Ray crystal structure of 6i

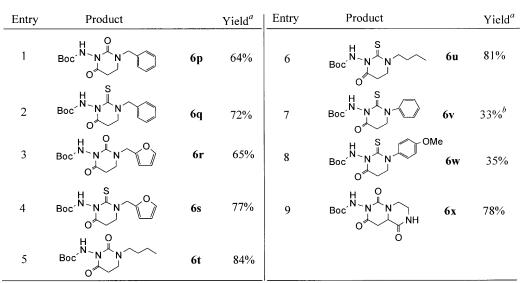
1160

 Table 1

 One-pot synthesis of 3-aminohydantoin/thiohydantoin derivatives

1

Entry	Product		Yield ^a	Entry	Product		Yield ^a
1		6a	95%	9		6i	87%
2		6b	95%	10	Boc ^{-N} NNN	6j	94%
3		6c	81% ^b		H U		
	o s			11		6k	74%
4		6d	80%				
	•			12		61	82% ^b
5		6e	91%				
	Ϋ́Η			13		6m	43%
6		6f	92%				
-	0 H			14		6n	76%
7		90%		ď			
	O H			15		60	81%
8		<i>(</i>)	93%		0		
8		6h	7370				


a. Isolated yields. ¹H and ¹³C NMR, mass spectral data and elemental analyses were consistent with the indicated structures without chromatographic purification. Product **60** was characterized after chromatographic purification. *b.* Purity of **6c** was 86% and **6l** was 82% by HPLC (H₃PO₄/H₂O/CH₃CN: 0.1/94.9/5).

This methodology was extended to the preparation of a series of novel 3-amino-1-substituted dihydrouracils/dihydrothiouracils from the corresponding *N*-substituted β -amino acid esters. Compared to hydantoin ring formation, cyclization to the dihydrouracil ring was sluggish at 60°C. However, when the reactions were carried out at 100°C and longer times (>15 h), the cyclization proceeded smoothly. Only desired products were observed in most cases (Table 2).

As shown in Table 2, the *N*-benzyl and *N*-furfuryl, as well as *N*-*n*-butyl substituted β -amino acid esters, afforded the desired products **6p–6u** in good yield (entries 1–6). The *N*-phenyl and *N*-*p*-methoxyphenyl-substituted β -amino acid esters, however, provided **6v** and **6w** in lower yield (entries 7 and 8). The major products obtained in these two reactions were non-cyclized products. When ethyl 3-oxopiperazine 2-acetate was used, the bicyclic products **6x** was obtained in good yield (entry 9).

In summary, an efficient one-pot synthesis of 3-aminohydantoin and 3-aminodihydrouracil derivatives has been developed. This method is simple (one-pot) with mild reaction conditions, and provides high

Table 2
One-pot synthesis of 3-aminodihydrouracil/dihydrothiouracil derivatives

a. Isolated yields. ¹H and ¹³C NMR, mass spectral data and elemental analyses were consistent with the indicated structures after chromatographic purification. *b.* Purity of **6v** was 84% by HPLC (H₃PO₄/H₂O/CH₃CN: 0.1/94.9/5).

yields without purification in most 3-aminohydantoin cases. In addition, this method provides a versatile synthetic route to 3-aminohydantoin, thiohydantoin and 3-aminodihydrouracil, thiodihydrouracil derivatives from commercially available starting materials.

Acknowledgements

We are grateful to Dr. Jeff Ares and Professor Daniel M. Ketcha for their helpful discussions. We also thank Fred C. Wireko and Michael R. Mootz for X-ray structures of compound **6**i.

References

- 1. (a) Kiec-Kononowicz, K.; Zejc, A.; Byrtus, H. *Pol. J. Chem.* **1984**, *58*, 585–591. (b) Lange, J., et al. Polish Patent, PL 123138 B1, April 30, 1984.
- 2. Wright, G. C.; Michels, J. G.; Spencer, C. F. J. Med. Chem. 1969, 12, 379-381.
- 3. Bernard, L., et al. French Patent, 2000801, January 24, 1969.
- 4. Kobayashi, N., et al. Japanese Patent, 09176131 A2, July 8, 1997.
- 5. (a) Taub, W. US Patent 2767193, 1956. (b) Chem. Abstr. 1957, 51, 5811.
- 6. Szczepanski, H.; Kristinsson, H.; Maienfish, P.; Ehrenfreund, J. WO 95/18123, 1995.
- 7. Lindemann, A.; Khan, N. H.; Hofmann, K. J. Am. Chem. Soc. 1952, 74, 476–479.
- 8. Gante, J.; Lautsch, W. Chem. Ber. 1964, 97, 994-996.
- 9. (a) Schlogl, K.; Derkosch, J.; Wawersich, E. Monatsh. Chem. 1954, 85, 607–626. (b) Schlogl, K.; Korger, G. Monatsh. Chem. 1951, 82, 799–814.
- 10. Davidson, J. S. J. Chem. Soc. 1964, 4646-4647.
- 11. Gillis, B. T.; Dain, J. G. J. Heterocycl. Chem. 1971, 8, 339–339.
- 12. Wildonger, R. A.; Winstead, M. B. J. Heterocycl. Chem. 1967, 4, 981-982.

- 13. Lalezari, I. J. Heterocycl. Chem. 1985, 22, 741-743.
- 14. Saegusa, Y.; Harada, S.; Nakamura, S. J. Heterocycl. Chem. 1990, 27, 739-742.
- 15. Milcent, R.; Akhnazarian, A.; Lensen, N. J. Heterocycl. Chem. 1996, 33, 1829-1833.
- 16. Ragab, F. A.; Eid, N. M.; El-Tawab, H. A. Pharmazie 1997, 52(12), 926-929.
- 17. Yoon, J.; Cho, C.-W.; Han, H.; Janda, K. D. Chem. Commun. 1998, 2703–2704.
- 18. Experimental details for the synthesis of **6i**: To a solution of 1.08 g (6 mmol) of carbonyldiimidazole (1) in 25 mL of 1,4-dioxane was added dropwise 0.66 g (5 mmol) of *tert*-butyl carbazate (2) in 25 mL of 1,4-dioxane. The solution was stirred for 3 h at room temperature, followed by the addition of benzyl (*S*)-(-)-1,2,3,4-tetrahydro-3-isoquinoline carboxylate *p*-toluenesulfonic acid salt 2.19 g (5 mmol) and triethylamine (0.5 mL). The resulting mixture was heated to 60°C for 4 h. The dioxane was removed under reduced pressure. The residue was dissolved in EtOAc (150 mL) and washed with water (2×50 mL), 0.1N aqueous HCl (2×50 mL), dried with MgSO₄ and concentrated to 20 mL in vacuo to give a white precipitate. The solid was filtered off and dried in vacuo to afford **6i** (1.38 g, 87%). ¹H NMR (CDCl₃) δ 7.18–7.32 (m, 4H), 6.66 (s, 1H), 5.07 (d, 1H, *J*=16.8 Hz), 4.46 (d, 1H, *J*=16.6 Hz), 4.20 (m, 1H), 3.33 (d×d, 1H, *J*₁=4.5 Hz, *J*₂=15.7 Hz), 3.02 (m, 1H), 1.51 (s, 9H); ¹³C NMR (CDCl₃) δ 171.5, 154.0, 153.1, 130.7, 129.6, 127.7, 127.5, 126.8, 83.4, 53.8, 41.9, 30.9, 28.2; MS *m*/z 318 (M+1); anal. calcd C₁₆H₁₉N₃O₄.0.2 H₂O: C, 59.88; H, 6.09; N, 13.09. Found: C, 59.86; H, 5.84; N, 13.00.